
Universal Relational Storage for Geometric Primitives

Timothy M. Shead∗

The K-3D Project

Figure 1: A zoo of geometric primitive types can be stored using a single relational data structure.

Abstract
To make new geometric primitive types easier to work with
for researchers and easier to use for application developers,
we propose a universal data structure that e�ciently stores
complex heterogeneous collections of geometric primitives
(Figure 1). Primitives are stored using a relational hierar-
chy of strongly-typed named arrays that is more e�cient
than pointer-based structures, suitable for partitioning and
parallel computation, and �exible enough to allow practical,
�on-the-�y� generation of new primitive types at runtime.
The arrays and relationships used to encode primitive types
are captured using �schemas� inspired by relational database
systems � making it possible to implement automated val-
idation and modi�cation operations without a priori under-
standing of how individual arrays will be used by a primitive.
We demonstrate an implementation of this data structure
within the visualization pipeline of the open-source K-3D
modeling and animation application, and provide examples
of builtin and runtime schemas.

CR Categories: I.3.5 [Computational Geometry and Ob-
ject Modeling]; I.3.6 [Methodology and Techniques]: Graph-
ics data structures and data types; E.1 [Data Structures]:
Arrays geometric primitives, data structures, arrays

∗e-mail: tshead@k-3d.com

1 Introduction

The set of geometric primitive types used in computer
graphics is constantly growing: in addition to common
types including polyhedra, NURBS curves and surfaces,
and quadrics, new research into techniques including point-
based surfaces[Kobbelt and Botsch 2004], implicit surfaces
[Bloomenthal and Wyvill 1990], and subdivision surfaces
[Zorin 2006] is ongoing. However, researchers working with
new primitive types cannot use existing applications and
are forced to spend time on application development and
supporting-code instead of focusing on the primitives them-
selves. For applications, the ever-expanding list of new prim-
itive variations and completely new primitive types is an em-
barrassment of riches. Providing support for the union of in-
teresting geometric primitive types to end-users becomes in-
creasingly di�cult as adding hard-coded internal data struc-
tures for each new type requires signi�cant amounts of repet-
itive, detail-oriented, and error-prone code to support seri-
alization, validation, scripting, primitive-speci�c algorithms,
etc. For both communities � researchers and application
developers � something new is needed: a universal data
structure that can be used to encode any primitive type,
allowing for the rapid development, deployment and use of
new primitives as the �eld advances. Such a data structure
must balance a broad set of potentially-con�icting require-

ments: in addition to capturing the structure and attributes
of widely-divergent primitive types, it must do so in a way
that is e�cient in time and space, supports modern CPU de-
sign and the trend towards parallel multi-threaded compu-
tation, and supports the features of modern graphics hard-
ware such as retained geometry. The design must maintain
a balance between generality and usability, and should be
su�ciently self-describing to allow automated operations on
otherwise unknown primitive types. Last-but-not-least, such
a structure must provide a consumable programming inter-
face and a reasonable match for developers' mental models.
In the remainder of this paper we propose a data struc-
ture that meets these requirements, and describe a reference
implementation using the open-source K-3D modeling and
animation system [Shead 2005]. K-3D is based on a pipeline
architecture where data source, data modi�er, and data sink
components are instantiated from plugins and connected to
create data-processing pipelines [Shead 2008]. The �exibil-
ity of a universal data structure for primitives is uniquely
suited to such a combined plugin / pipeline architecture,
making it easy to create new plugin components that gen-
erate, modify, and render new primitive types without al-
tering the core application. Using programmable pipeline
components, it becomes practical to introduce new geomet-
ric primitive types in a running application using interpreted
scripting languages � a unique and powerful feature for re-
searchers and power-users. Note here the important distinc-
tion that we are making between creating a new primitive
types (e.g. a �sphere� primitive) versus creating primitive
instances (a polyhedral approximation to a sphere, a sphere
made-up of NURBS patches, etc).

2 Design

2.1 Geometry

Our goal was to create a generic primitive data structure
that would �t well within a visualization pipeline architec-
ture, as in Figure 2. Here, a top-level Geometrydata struc-
ture containing geometric primitives is created by a data
source, travels through the pipeline to a data modi�er where
it is altered, then moves to a data sink where it is rendered
or serialized:

������ ���	
	��
�����
��

�	��
���	
	��������
��

Figure 2: Visualization pipeline processing geometric data.

In many applications, a typical representation for geome-
try might be a C struct, C++, or Java class representing a
hard-coded collection of speci�c primitive types (Figure 3):

��������

��	
����

����
������

����
�������

��	������

�����

���

Figure 3: Typical geometry object containing hard-coded
primitives.

Because we wanted to support an open-ended set of prim-
itive types, we opted to begin our new Geometry data struc-
ture as a container for zero-to-many Primitive objects (Fig-
ure 4):

��������

��	�	�	
��

��	�	�	
�
���

�
�
�

��	�	�	
�
�

��	�	�	
�
�

Figure 4: Our Geometry object is a container for generic
Primitive objects.

Each Primitive contained in the top-level Geometry data
structure encapsulates an instance of a speci�c geometric
primitive type, and the Geometry can contain zero-to-many
instances of any primitive. This approach adds signi�cantly
to the �exibility of the structure (we can move arbitrary
numbers of arbitrary primitive types through the pipeline as
a single logical unit) and greatly simpli�es many operations,
as will be seen later.

2.2 Primitive Storage

The most serious challenge in designing the Primitive data
structure is striking the right balance between structure and
generality. Typical pointer-based data structures encode
primitives using constructs that are de�ned at compile-time,
such as C++ classes. This data is highly structured (provid-
ing type-safety, validation, and constraint enforcement) but
exhibits poor �exibility (adding a new type requires modi-
�cations to existing classes). At the opposite extreme, we

could simply declare a primitive to be �a container of bytes�
� an approach providing complete �exibility at the expense
of being devoid of all structure, and consequently completely
opaque to third parties. Since we wanted to allow for generic
operations that could be be applied to any primitive, with-
out prior understanding of its structure, some middle-ground
was necessary.
For inspiration, we turned to the scienti�c simulation and

visualization community, where it is common to represent �-
nite element meshes using arrays of points, cells, and connec-
tivity data. For example, the Visualization Toolkit (VTK)
de�nes more than 15 cell-types including pixels, voxels, tri-
angles, polygons, and linear and quadratic hexahedra, all
stored using arrays [Schroeder et al. 2006]. Similarly, [Alum-
baugh and Jiao 2005] present several schemes for storing
polyhedra using collections of arrays, and enumerate the ad-
vantages of arrays over pointer-based data structures, in-
cluding compact storage, comprehensive support in tradi-
tional programming languages, convenient data exchange
among libraries and applications, and easy partitioning for
parallel computation. They also outline strategies for e�-
cient querying of entities and neighborhoods. Finally, the
RIB binding to the RenderMan interface provides a com-
pelling real-world example of how di�erent primitive types
can be encoded using varying-length arrays[Pixar 2005].
These examples convinced us that it was possible, though
not su�cient, to encode arbitrary primitive types using col-
lections of arrays.

2.3 Point Storage

Before completing the design for the individual Primitive
data structures, an important design decision was where we
should store geometric point coordinates, for those primitive
types that require coordinates to de�ne their geometry. Al-
though we could have stored points as part of each individual
Primitive we wanted to allow points to be shared between
primitives so end-users could �stitch-together� disjoint prim-
itive types. To support this, the top-level Geometry data
structure includes optional �points� and �point_selection�
arrays that store the 3D coordinates and selection state re-
spectively of all the points for the entire data structure.
Primitive objects that require point-based geometry ref-
erence the points using arrays of indices into the �points�
array, so that modifying the coordinates of a point that
is shared between two primitives implicitly a�ects each.
Figure 5 demonstrates the updated Geometry data struc-
ture with point-related storage arrays1. Note that this ap-
proach simpli�es some operations while complicating others
� for example, algorithms that deform geometry using sim-
ple transformations can modify the points in the top-level
Geometry object without having to know anything about
the Primitive objects that use those points. On the other
hand, operations that that add or remove points to the par-
ent Geometry object must update the index arrays in in-
dividual Primitive instances so they continue to reference
their original points. We will address those concerns in Sec-
tion 2.5.

2.4 Primitive Structure

While the notion of a Primitive as a �at collection of generic
arrays provided the �exibility we required, it still lacked the
structure needed to perform automated operations such as
constraint validation or the point index updates mentioned
in Section 2.3. Here, we made the observation that relational

1We use �oating-point storage for our selection arrays because

we support �fuzzy� selections.

��������

��	
��

��	
����
���	�

��	�	�	���

��	
�������

����
�������

��	�	�	����

��	�	�	����

�
�
�

��	�	�	���
��

Figure 5: Complete Geometry data structure, showing op-
tional point-related data.

database management systems do just this in a wide vari-
ety of contexts. In particular, many modern databases store
data structures of arbitrary complexity using the relational
model introduced in [Codd 1970]. Databases using the re-
lational model store data objects using �relations� that are
sets of �tuples� that share �attributes� � or in more com-
mon modern usage, �tables� containing �rows� or �records�
that share �columns�. In addition, relational databases also
store metadata that de�ne inter-table �relationships�, such
as a relationship between employee records in an employee
table and employer records in an employer table. Collec-
tively, this set of tables, columns, and relationships de�ned
for a relational database is referred to as a �schema�.

This notion of a relational database schema was a
good starting-point for organizing the contents of a
Primitive � in particular, it matched the sorts of parent-
child relationships implicit in many primitive types, such
as the top-down relationships in a polyhedron primi-
tive: polyhedron→shell→face→loop→edge→vertex. Ac-
cordingly, we introduced our own Table data structure which
stores a heterogeneous collection of strongly-typed named
arrays using a map containing string array-names as keys,
and the arrays themselves as values2. With this arrange-
ment the name of an array is guaranteed unique, and array-
lookups by name are fast. Table further constrains the
lengths of all its member arrays to be equal at all times.
With Table in place, a Primitive can be de�ned as a con-
tainer for a collection of Table objects that conform to a
speci�c Schema.

2In practice these are actually reference-counted shallow copies

for e�ciency.

��������

��	
��

��	
����
���	�

��	�	�	���

��	
�������

����
�������

��	�	�	������
������
�

���������

���
��������

��
����	���������

��������
���	�
��

���
��������

�������	����
�����

������
�������
���

�����������	�
��

��������
���	�
��

���������

��

���
���
����

�
�����	����������

���
������

�

����

�������

���
����������

����������	
���

����������
���	�
��

�
�����������

����
�������

�
�����������

�
�����������

 ����	�
������

����
�������

�
�����������

�
�����������

�
�����������

�
�����������

����
�������

Figure 6: A Primitive is a collection of Table objects and
arrays conforming to a speci�c Schema.

In Figure 6 we demonstrate a polyhedron Primitive that
contains �type� and �structure� information:

The Primitive �type� is a string that uniquely identi-
�es its Schema. It is used by algorithms to quickly identify
the type of geometric primitive stored in a Primitive ob-
ject. Using a string as the unique identi�er makes it human-
readable, easy to serialize, easy to debug, and easy to �lter,
as in the following pseudo-code for an algorithm that only
operates on polyhedra:

for p r im i t i v e in geometry . p r im i t i v e s :
i f p r im i t i v e . type i s "polyhedron "
Do polyhedron−s p e c i f i c s t u f f

The Primitive �structure� is the collection of Table ob-
jects that de�ne the structure, connectivity and (optional)
geometry for the primitive. The set of tables, arrays, names,
and types are strictly de�ned by the Schema. As seen in Fig-
ure 6, there is a one-to-one correspondance between Table
objects and components of a polyhedron: the �face� table
contains one record for each face in the polyhedron, the
�edge� table contains one record for each edge, and-so-on.
The set of arrays de�ned for each Table de�nes the set of at-
tributes that are available for each record. These attributes
may be categorical, quantitative, or referential in nature.

2.5 Primitive Metadata

The Schema based Primitive meets all of our stated re-
quirements for generic primitive storage, but misses-out on
many possible improvements. While it is trivial to de�ne
new primitive types by de�ning new types of Schema, we
wanted to go further in processing primitives. While it is
easy to write algorithms that work within the con�nes of a
known Schema, the set of table and array names for a known
Schema amount to �magic numbers� that make the algorithm
Schema-speci�c. Instead, we wanted to be able to write al-
gorithms that could operate on arbitrary schemas without a
priori knowledge about their speci�c table or array con�gu-
rations.

For example, we wanted to be able to write a �Merge�
algorithm that could merge Geometry containing schemas
that the algorithm knows nothing about (Figure 7):

�������

���	�

������
��

����
���	���
������

�������

������
��

Figure 7: Merging geometric data within the visualization
pipeline.

In this case, multiple Geometry inputs to the �Merge� data
modi�er can each contain arbitrary collections of Primitive
instances, with the Merge algorithm trivially copying each
instance to a single output Geometry data structure. While
merging the Primitive instances is trivial, it isn't su�cient
� as we saw in Section 2.3, any Primitive instances that
contain vertices simply reference the shared vertices stored
in the top-level Geometry, and it is necessary to o�set those
vertex references in the merged output. Thus, the Merge
algorithm needs to know which Primitive arrays reference
vertices and which don't. While we could have used a spe-
cial array-naming scheme to identify these arrays, we did
not want to impose arbitrary constraints on Schema authors'
naming choices, and we did not want to prevent a Schema
from containing more-than-one array that referenced points.
Instead, we opted to use a generic metadata capability to
�tag� arrays. Each array in a Primitive can contain an ar-
bitrary collection of �metadata�, composed of string name-
value pairs. Using metadata, we can �tag� special attributes
of individual arrays. For our Merge use-case, we de�ned a
�domain� tag that can be used to specify that �the domain
of array X is indices into array Y�. Every array that refer-
ences the Geometry points array is tagged with the domain
tag, allowing the Merge algorithm to search for all of the
point-index arrays in a Primitive, o�setting the indices in
those arrays as appropriate, and without any knowledge of
any speci�c primitive schemas.

2.6 Primitive Attributes

While a Schema provides everything needed to de�ne the
structure and connectivity of a primitive type, there are
many other optional attributes typically assigned to geomet-
ric primitives, including per-vertex colors, normal vectors,
and texture coordinates to name just a few. While we could
have de�ned these attributes formally as part of the Schema,
we wanted to provide researchers, developers and end-users
with the �exibility to de�ne as many or as few of their own
attributes as they might like.
To accomplish this, we provide a second collection of

Table instances in each Primitive that contains user-
de�ned attribute arrays. The set of attribute Table in-
stances is de�ned by the Schema, but the collection of ar-
rays in each Table is user-de�ned. Because every array in
a Table is constrained by-de�nition to be the same length,
attributes are always de�ned consistently across a primitive.
In Figure 8, we see the polyhedron Schema in its full gener-

ality, with a user-de�ned per-face �texture_name� array, and
per-vertex �color� and �texture_coordinates� arrays. Note
that while we could have stored user-de�ned attributes in the
same Table instances as the rest of the Primitive, we opted
not to for two reasons: �rst, we did not want user-de�ned
attribute arrays to �compete� with the Schema for array-
names. In particular, we did not want Schema-de�ned ar-

��������

��	
��

��	
����
���	�

��	
������	�����

��	�	�	���

��	
�������

����
�������

��	�	�	������
������
�

���������

����	�����

���
��������

��
����	���������

��������
���	�
��

���
��������

�������	����
�����

������
�������
���

�����������	�
��

��������
���	�
��

���������

��

���
���
����

�
�����	����������

���
������

�

����

�������

���
����������

����������	
���

����������
���	�
��

���
�����
���
��

���
��������

���
��������

���������
����

���
����������

���
���

��������������	
�����

�
�����������

����
�������

�
�����������

�
�����������

 ����	�
������

����
�������

�
�����������

�
�����������

�
�����������

�
�����������

����
�������

!��	
�������

"�
��������

�������������	
����������

Figure 8: Complete polyhedron Primitive with user-de�ned
texture, color, and texture coordinate array attributes.

rays to clash with existing user-de�ned arrays, if the Schema
ever grew over time. Second, we found that it wasn't always
necessary or desirable to have a one-to-one mapping between
the structure and the attributes of a Primitive � for exam-
ple, note from Figure 8, that the polyhedron Schema has a
�constant� attribute Table, but no corresponding �constant�
structure Table. This re�ects the fact that, while it is use-
ful to store user-de�ned per-polyhedron attributes, there is
no corresponding structural requirement for per-polyhedron
data. Conversely, you will also see that while the Schema de-
�nes a structural �loop� Table that stores polyhedron face
loop information, we have yet to �nd a circumstance where
we wanted to store user-de�ned per-loop attributes. Thus,
the Schema currently omits support for a �loop� attribute
Table.

3 Application Case Study

3.1 Scripting and Serialization

In the past, support for embedded scripting languages such
as Python[Python 2008] meant that we had to manually
write integration code to marshal each C++ primitive type
across language boundaries. With the universal data struc-
tures, this code only had to be written once for the Geometry,
Primitive, and Table classes, and now supports all primi-
tive types for the foreseeable future. Similarly, our original
serialization code had to be updated for each new prim-
itive type added; this was extremely error-prone, since it
was easy to inadvertently overlook saving or loading parts
of the data. Now a single generic operation handles serial-
ization for all primitive types � we simply walk the tree of
Geometry, Primitive, Table, and array objects, serializing
each in-turn. Loading serialized geometry is similarly easy,
since it is a simple matter of instantiating the same objects
in reverse order from the serialized data.

3.2 Validation and Creation

Although newly-added primitive types are automatically se-
rialized without any code changes, care must be taken for

versioning and validation � because the contents of a newly-
loaded Geometry are based entirely on the Schema in e�ect
at the time the geometry was saved, additions or modi�ca-
tions to the Schema can cause potential problems. To ad-
dress problems of versioning, we need robust validation for
Primitive objects - that is, we should not assume based
on its schema type-string that a Primitive will contain a
particular con�guration of tables or arrays, since individual
tables and arrays may be added, renamed, or removed as a
schema evolves. To address this, we currently provide a set
of validation functions for a set of common primitive types
that are de�ned for the application. These validation func-
tions check to con�rm whether a Primitive instance con-
tains a complete, correct array con�guration for a speci�c
schema. The process con�rms that the Primitive contains
every Table de�ned by the Schema, that structure and at-
tribute Table objects with matching names are the same
length, that each Table contains the arrays required by the
Schema, that each array stores values of the correct type and
contains the expected metadata, and that the length of each
array is consistent with the rest of the data. Further valida-
tion con�rms that array indices are not out-of-bounds, and
that the Geometry contains point data if any of its primi-
tives contain point indices. We recognize that this approach
is only a partial solution to the validation problem, since it
means that validation is only de�ned for a set of �builtin�
primitive types that are de�ned at compile time. In future
work we plan to make primitive validation a type of plugin,
so that validation will be available for new primitive types
that are deployed via plugin.

Similarly, there are many places in the code where data
sources create instances of a speci�c primitive type. Rather
than duplicate the logic to create a speci�c schema and all its
tables and arrays at multiple points in the code, we provide
schema-speci�c creation functions that centralize this logic.

3.3 Sample Schemas

Currently, we have de�ned schemas, creation, and valida-
tion functions for all of the primitives de�ned by Render-
Man (bicubic patches, bilinear patches, blobby implicit sur-
faces, cones, cubic curves, cylinders, disks, hyperboloids, lin-
ear curves, NURBS patches, paraboloids, points, polyhedra,
spheres, and tori), plus NURBS curves and Newell Teapots.

3.3.1 Teapots

In contrast to the polyhedron Schema presented in the pre-
ceding sections, one of our simplest schemas de�nes stor-
age for the classic Newell Teapot. As always, keep in mind
that we are de�ning teapots as a distinct primitive type,
rather than creating teapot-shaped surfaces using collections
of patches or polygons. This allows teapot primitives to
be represented extremely compactly: since the shape of the
teapot is implicit, we need only supply a few parameters per
teapot, such as the choice of surface material and a trans-
formation matrix. We de�ne the teapot schema so that a
single primitive can contain an arbitrary number of teapot
instances. This approach allows us to take full advantage
of the bene�ts of an array-based encoding, so that an arbi-
trarily large number of teapot instances can be represented
compactly with just a few arrays. We outline the teapot
Schema in Figure 9:

��������

��	
��

��	
����
���	�

��	�	�	��� ��	�	�	�����������

���������

����	�����

���
�����������

������	�
��

�����	����

���
���	�
��

���
�����
���
��

���
�����������

�����	�
������

����	�������

����
�������

Figure 9: Teapot Schema

The teapot structure consists of a single Table contain-
ing �surface� (per-teapot) data: an array of surface material
de�nitions, an array of 4x4 transformation matrices, and an
array to keep track of selection state. Each teapot instance
will have one entry in each of the �materials�, �matrices�, and
�selections� arrays, controlling its surface appearance, trans-
formation, and selection-state respectively. The Schema de-
�nes additional storage for �constant� (global) and �surface�
(per-teapot) attributes. Note that the Geometry �points�
and �point_selection� arrays are not needed, since the teapot
primitive geometry is completely implicit.
We have de�ned several primitive schemas that follow this

model of simple, �implicit� (no points) primitives, including
cones, cylinders, disks, hyperboloids, paraboloids, spheres,
and tori.

3.3.2 Bicubic Patches

In Figure 10 we demonstrate a more complex Schema that
encodes bicubic patches. As with the teapots Schema, we
store zero-to-many patches in a single Primitive object for
e�ciency:

��������

��	
��

��	
����
���	�

��	�	�	���

��	
�������

���
��������

��	�	�	�����	���	��������

���������

����	�����

���
���������

������������	�
��

���������
���	�
��

���
����������

���������	
���

���
�����
���
��

���
�������������

���
���������

���
����������

�����	�
������

����
�������

�
�����������

Figure 10: Bicubic patch schema

As you would expect, the �patch� Table will contain one
row for each patch instance in the primitive. Because each
patch is always composed of 16 control vertices, the number
of rows in the �vertex� table will always be 16×the number of
rows in the �patch� table, and no further data is required for
random access into the �patch_points� array. The bicubic
patch attributes include �constant� (global), �patch� (per-
patch), �vertex� (per-control vertex) and �parameter� (per-
parametric-corner) attributes. The �vertex� attribute Table
must contain 16 rows per patch and the �parameter� Table
must contain 4 rows per patch.
We have de�ned many other primitive schemas that store

point-based geometries in similar fashion, including bilinear

patches, NURBS patches, cubic curves, linear curves, and
NURBS curves.

3.3.3 Implicit Surfaces

Finally, Figure 11 provides an example of one of our most
complex and unusual schemas to-date, one which can store
implicit surfaces compatible with RenderMan �blobbies�:

��������

��	
��

��	
����
���	�

��	�	�	��� ��	�	�	�����
�����

���������

����	�����

���
����
����

��
�����

���
��������
��

������
���

���
������������

�����������	���������
���

���������������
�����
���

�����������

���
�����������

��	��������������

��	������	�	�	����

������	�
��

�������������
���

���	�	�	������
���

���
����������

���	�	�	����	�����
�����

���	�	�	����
�������
���

���	�	�	����

���
�����
���
��

���
�������������

���
�����������

���
����������

����
�������

�
�����������

�
�����������

�
�����������

�
�����������

�
�����������

�
�����������

�����	�
������

�
�����������

�
�����������

�
�����������

�
�����������

�
�����������

Figure 11: Implicit surface schema

In this case, the schema encodes a tree of assembly-
language-like opcodes and operands that are used to com-
pute implicit surfaces.

3.3.4 Bezier Triangles

Since adopting the new relational data structures, Ashish
Myles of the Florida Surf Lab (http://www.cise.ufl.edu/
research/SurfLab) has implemented Bezier triangle primi-
tives using the new data structures, see Figure 12.

3.4 Runtime Schemas

Although the bulk of end-users will do their work using the
�builtin� primitive schemas, the �exibility of the universal
data structure provides researchers and power-users with a
unique capability to create their own new primitive types
at runtime. For K-3D, this means creating three types of
pipeline component: �sources� that can create instances of a
new primitive type; �modi�ers� that perform operations on
the new type, and �painters� that can render the new type
using APIs such as OpenGL and RenderMan. Because K-3D
provides scripted / programmable versions of each of these
pipeline component types, end-users are free to introduce
new primitive types �on-the-�y� at runtime using scripting
languages such as Python:

• A researcher working with new or modi�ed primitive
types (point based surfaces, new subdivision surface
types, new implicit surface types, etc) can introduce
them into K-3D with a minimum of e�ort, focusing on

Figure 12: Bezier Triangle primitive support

the de�nition and rendering of their new primitive while
bene�tting from the existing infrastructure (the graph-
ical user interface, automatic serialization, a large body
of existing sources and modi�ers, etc).

• A �power-user� can de�ne their own special-purpose
primitives, such as a �railroad track� primitive that
combines a low-resource parameterization (a simple de-
scription of the position of the track) with sophisticated
painters that perform �complexity expansion�, creating
rails and ties at render-time.

• For users working with RenderMan or other render
engines, custom primitives can be de�ned as proxies
for procedural or implementation-de�ned primitives,
so that visually-complex rendered primitives have low-
resolution counterparts in the application user inter-
face.

In the following example, we create a new �cube� Schema at
runtime using a Python script, and populate it with a ran-
dom collection of cubes. Of course, creating a specialized
primitive type for cubes is a contrived example, but it al-
lows us to present a complete, working example in the space
available. Note that, like the �teapot� Schema outlined in
Section 3.3.1, we are not simply creating cubes using poly-
hedra � rather, we are de�ning storage for primitive cubes
with implicit geometry. Each cube instance will be a unit
cube centered on the origin, with just a surface material and
transformation matrix to be stored per-cube. This script
would be used with a pipeline programmable source compo-
nent, which executes a Python script to create a Geometry
instance as output. In the example we de�ne �surface� (per-
cube) attributes, and add a sample �Cs� color attribute that
can be used to assign per-cube colors:

import k3d
import random

Construct a custom "cube" schema :

cubes = Output . p r im i t i v e s () . c r e a t e ("cube")

matr i ce s = cubes . s t r u c tu r e () . c r e a t e ("matr i ce s " ,
"k3d : : matrix4 ")

mate r i a l s = cubes . s t r u c tu r e () . c r e a t e ("mate r i a l s " ,
"k3d : : ima t e r i a l ∗")

su r f a c e = cubes . a t t r i b u t e s () . c r e a t e (" su r f a c e ")
c o l o r = su r f a c e . c r e a t e ("Cs" , "k3d : : c o l o r ")

Add a bunch of cubes at random :

for x in range (−10 , 1 1) :
for y in range (−10 , 1 1) :

matr i ce s . append (
k3d . t r an s l a t e 3 (x , y , 0)
∗ k3d . s c a l e 3 (random . uniform (0 . 2 , 1)))

mat e r i a l s . append (None)
c o l o r . append (k3d . c o l o r (random . uniform (0 , 1) ,
random . uniform (0 , 1) , random . uniform (0 , 1)))

This script handles creating the new cube primitive at the
beginning of a pipeline. At the end of the pipeline, we
typically need a �painter� that can render the cube primi-
tive using OpenGL or RenderMan. As before, we have a
scripted pipeline sink that executes a script to perform its
work. Thus, we can create a script that uses the Python
bindings for OpenGL [PyOpenGL 2008] to render the new
�cubes� Schema:

import k3d
from OpenGL .GL import ∗

glPushAttr ib (GL_ALL_ATTRIB_BITS)
glFrontFace (GL_CW)
glCul lFace (GL_BACK)
glEnable (GL_CULL_FACE)
g lMate r i a l (GL_FRONT, GL_AMBIENT, [0 . 1 , 0 . 1 , 0 . 1])
g lMate r i a l (GL_FRONT, GL_SPECULAR, [0 , 0 , 0])
g lMate r i a l (GL_FRONT, GL_EMISSION, [0 , 0 , 0])

for pr im i t i v e in Geometry . p r im i t i v e s () :
i f pr im i t i v e . type () != "cube" :
continue

matr i ce s = pr im i t i v e . s t r u c tu r e () ["matr i ce s "]
s u r f a c e = pr im i t i v e . a t t r i b u t e s () [" su r f a c e "]
Cs = su r f a c e ["Cs"]

for i in range (l en (matr i ce s)) :

matrix = matr i ce s [i]
c o l o r = Cs [i]

glMatrixMode (GL_MODELVIEW)
glPushMatrix ()
glMultMatrixd (matr i ce s [i] . column_major_list ())

g lMate r i a l (GL_FRONT, GL_DIFFUSE, [c o l o r . red ,
c o l o r . green , c o l o r . b lue])

g lBegin (GL_QUADS)
Enumerate cube v e r t i c e s here .

glEnd ()

glPopMatrix ()

g lPopAttr ib ()

Observe that the script iterates over the contents of
a Geometry object, looking at each Primitive in-turn,
�ltering-out any schemas other than the �cube� Schema. It
then extracts arrays from the schema structure by-name and
uses them to render the resulting geometry. The results can
be seen in Figure 13:

Figure 13: Scripted schema created and rendered at runtime
using Python and OpenGL.

4 Conclusions & Future Work

With the new Geometry, Primitive, and Table data struc-
tures de�ned and implemented in K-3D, we have begun to
reap immediate rewards. We have eliminated many detail-
oriented, di�cult, and error-prone maintenance tasks and
decreased the size of our code-base while nearly doubling
the number of geometric primitive types supported by the
application.
As manufacturers continue the trend towards multi-core

CPU architectures, the organization of our data structures
into arrays will lend itself to e�ciency, trivial partitioning,
and parallel computation. We have begun to take advantage
of this, using the Intel Threading Building Blocks (TBB) li-
brary [Intel 2006] to parallelize many of our embarassingly-
parallel operations: for example, because geometric primi-
tive points are all stored in a single array, it is trivial to do
simple point-transformations in parallel with TBB. We will
continue to develop and re�ne primitive schemas that work
well in parallel.
In addition to CPU performance, array-based data struc-

tures make it much easier to take advantage of GPU fea-
tures such as retained geometry. Many GPU APIs focus on
textures (2D arrays) for data exchange with the CPU. Be-
cause we organize our primitive structure and attributes into
arrays from the start, vertex coordinates, normals, texture
coordinates, per-vertex colors, etc. can be passed directly to
GPUs in a single call. Given the deprecation of immediate-
mode rendering in OpenGL 3.0 [Segal and Akeley 2008], the
importance of supporting retained-geometry APIs cannot be
overestimated.
We plan to expand the use of metadata in our schemas to

increase the number of operations that can be generalized to
multiple primitive types. For example, an interesting chal-
lenge would be to explore whether it is possible (or prac-
tical) to add su�cient high-level connectivity metadata to
create an extrusion algorithm that works with both NURBS
surfaces and polyhedra, without containing any hard-coded
knowledge about either.
We would like to further break-down the current distinc-

tion between primitive types that have creation and valida-
tion code built-in to the application, and primitive types that
are created by third-parties. This will require pluggable val-

idation and creation operations for new primitive types. By
registering validation plugins against primitive schemas, we
will be able to apply validation to new types automatically.

References
Alumbaugh, T. J., and Jiao, X. 2005. Compact array-
based mesh data structures. In Proceedings, 14th Inter-
national Meshing Roundtable, Springer-Verlag, 485�504.

Bloomenthal, J., and Wyvill, B. 1990. Interactive
techniques for implicit modeling. In SI3D '90: Proceedings
of the 1990 symposium on Interactive 3D graphics, ACM,
New York, NY, USA, 109�116.

Codd, E. F. 1970. A relational model of data for large
shared data banks. Communications of the ACM 13, 6,
377 � 387.

Intel, 2006. Threading building blocks.
http://www.threadingbuildingblocks.org.

Kobbelt, L., and Botsch, M. 2004. A survey of point-
based techniques in computer graphics. Computers &
Graphics 28, 6, 801�814.

Pixar, 2005. The renderman interface version 3.2.1, Novem-
ber.

PyOpenGL, 2008. Pyopengl home page.
http://pyopengl.sourceforge.net.

Python, 2008. Python home page. http://python.org/.

Schroeder, W., Martin, K. M., and Lorensen, W. E.
2006. The Visualization Toolkit: An Object-Oriented Ap-
proach to 3D Graphics, 4th ed. Kitware, Inc.

Segal, M., and Akeley, K. 2008. The opengl graphics
system: A speci�cation (version 3.0 - august 11, 2008).

Shead, T. M., 2005. K-3d home page. http://www.k-
3d.org.

Shead, T. M., 2008. K-3d visualization pipeline.
http://www.k-3d.org/wiki/Visualization_Pipeline.

Zorin, D. 2006. Modeling with multiresolution subdivision
surfaces. In SIGGRAPH '06: ACM SIGGRAPH 2006
Courses, ACM, New York, NY, USA, 30�50.

